Effective Relaying in Two-user Interference Channel with Different Models of Channel Output Feedback
نویسندگان
چکیده
In this paper, we study the impact of channel output feedback architectures on the capacity of two-user interference channel. For a two-user interference channel, a feedback link can exist between receivers and transmitters in 9 canonical architectures, ranging from only one feedback link to four-feedback links. We derive exact capacity region for the deterministic interference channel and constant-gap capacity region for the Gaussian interference channel for all but two of the 9 architectures (or models). We find that the sum-capacity in deterministic interference channel with only one feedback link, from any one receiver to its own transmitter, is identical to the interference channel with four feedback links; for the Gaussian model, the gap is bounded for all channel gains. However, one feedback link is not sufficient to achieve the whole capacity region of four feedback links. To achieve the full capacity region requires at least two feedback links. To prove the results, we derive several new outer bounds, and give a new three-layer coding achievability scheme, which splits every message into a private, common and relaying message layers.
منابع مشابه
The Expected Achievable Distortion of Two-User Decentralized Interference Channels
This paper concerns the transmission of two independent Gaussian sources over a two-user decentralized interference channel, assuming that the transmitters are unaware of the instantaneous CSIs. The availability of the channel state information at receivers (CSIR) is considered in two scenarios of perfect and imperfect CSIR. In the imperfect CSIR case, we consider a more practical assumption of...
متن کاملPolarization of Multi-Relay Channels: A Suitable Method for DF and CF Relaying with Orthogonal Receiver
Polar codes, that have been recently introduced by Arikan, are one of the first codes that achieved the capacity for vast numerous channels and they also have low complexity in symmetric memoryless channels. Polar codes are constructed based on a phenomenon called channel polarization. This paper discusses relay channel polarization in order to achieve the capacity and show that if inputs of tw...
متن کاملAchievable Secrecy Rate Regions of State Dependent Causal Cognitive Interference Channel
In this paper, the secrecy problem in the state dependent causal cognitive interference channel is studied. The channel state is non-causally known at the cognitive encoder. The message of the cognitive encoder must be kept secret from the primary receiver. We use a coding scheme which is a combination of compress-and-forward strategy with Marton coding, Gel’fand-Pinsker coding and Wyner’s wire...
متن کاملAverage Mutual Information Analysis of Multiple Input and Multiple Output System with Multihop Relaying in Wireless Communication System
Problem statement: Multiple Input and Multiple Output (MIMO) system with Multihop relaying techhnique is significant and active areas of wireless communication. In a rich scattering environment MIMO antenna system provides better channel capacity and data rates than single antenna systems. To provide high throughput, reliable transmission and broad coverage, wireless relaying techniques are ess...
متن کاملMulti-user MIMO MMSE non-regenerative relaying using local channel state information
In this article, we investigate a two-hop relaying communication where all nodes are equipped with antenna arrays. We derive the multiple-input multiple-output (MIMO) processing matrices using the mean-squared-error cost function and assuming that each node uses only locally available channel state information estimates. Spatial processing at the base station and at the user terminals is same a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1104.4805 شماره
صفحات -
تاریخ انتشار 2011